skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Ziwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PurposeTo develop a small‐tip multidimensional RF pulse design procedure that incorporates linear time‐invariant gradient imperfections and concomitant field effects. This could be particularly important for contemporary low‐field MRI systems with high‐performance gradients. Theory and MethodsWe developed an extension of the small‐tip excitation k‐space formalism, where concomitant fields were approximated as a Bloch‐Siegert shift in the rotating frame. This was evaluated using realistic simulations of 2D selective excitation at various field strengths (0.2T, 0.55T, 1.5T, 3T, and 7T) with single and parallel transmit. Simulated excitation profiles from the original and extended k‐space formalisms were compared. Experimental validations were performed at 0.55T with a single‐channel transmit. ResultsThe extended formalism provides improved 2D excitation profiles in all scenarios simulated, compared against the original formalism. The proposed method corrects the concomitant field effects on 2D selective excitations forB0 > 0.2T when the magnitude of theB0is far larger than that of nonrotating concomitant fields. Simulation and phantom experiments at 0.55T match well for both original and proposed methods, with the proposed method providing sharper and more accurate excitation profiles at off‐isocenter distances up to 15 cm. The impact of the proposed method is greatest in scenarios where concomitant fields are substantial, such as low field strengths and off‐isocenter. ConclusionConcomitant fields can be modeled as a Bloch‐Siegert shift in the rotating frame during multidimensional RF pulse design, resulting in improved excitation profiles with sharp edges. This is important to consider for off‐isocenter excitations and imaging at low field strengths with strong gradients. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. PurposeTo determine if contemporary 0.55 T MRI supports the use of contrast‐optimal flip angles (FA) for simultaneous multi‐slice (SMS) balanced SSFP (bSSFP) cardiac function assessment, which is impractical at conventional field strengths because of excessive SAR and/or banding artifacts. MethodsBlipped‐CAIPI bSSFP was combined with spiral sampling for ventricular function assessment at 0.55 T. Cine movies with single band and SMS factors of 2 and 3 (SMS 2 and 3), and FA ranging from 60° to 160°, were acquired in seven healthy volunteers. Left ventricular blood and myocardial signal intensity (SI) normalized by background noise and blood–myocardium contrast were measured and compared across acquisition settings. ResultsMyocardial SI was slightly higher in single band than in SMS and decreased with an increasing FA. Blood SI increased as the FA increased for single band, and increment was small for FA ≥120°. Blood SI for SMS 2 and 3 increased with an increasing FA up to ∼100°. Blood–myocardium contrast increased with an increasing FA for single band, peaked at FA = 160° (systole: 28.43, diastole: 29.15), attributed mainly to reduced myocardial SI when FA ≥120°. For SMS 2, contrast peaked at 120° (systole: 21.43, diastole: 19.85). For SMS 3, contrast peaked at 120° in systole (16.62) and 100° in diastole (19.04). ConclusionsContemporary 0.55 T MR scanners equipped with high‐performance gradient systems allow the use of contrast‐optimal FA for SMS accelerated bSSFP cine examinations without compromising image quality. The contrast‐optimal FA was found to be 140° to 160° for single band and 100° to 120° for SMS 2 and 3. 
    more » « less
  3. Abstract PurposeTo develop a robust single breath‐hold approach for volumetric lung imaging at 0.55T. MethodA balanced‐SSFP (bSSFP) pulse sequence with 3D stack‐of‐spiral (SoS) out‐in trajectory for volumetric lung imaging at 0.55T was implemented. With 2.7× undersampling, the pulse sequence enables imaging during a 17‐s breath‐hold. Image reconstruction is performed using 3D SPIRiT and 3D l1‐Wavelet regularizations. In two healthy volunteers, single breath‐hold SoS out‐in bSSFP was compared against stack‐of‐spiral UTE (spiral UTE) and half‐radial dual‐echo bSSFP (bSTAR), based on signal intensity (SI), blood‐lung parenchyma contrast, and image quality. In six patients with pathologies including lung nodules, fibrosis, emphysema, and air trapping, single breath‐hold SoS out‐in and bSTAR were compared against low‐dose computed tomography (LDCT). ResultsSoS out‐in bSSFP achieved 2‐mm isotropic resolution lung imaging with a single breath‐hold duration of 17 s. SoS out‐in (2‐mm isotropic) provided higher lung parenchyma and blood SI and blood‐lung parenchyma contrast compared to spiral UTE (2.4 × 2.4 × 2.5 mm3) and bSTAR (1.6‐mm isotropic). When comparing SI normalized by voxel size, SoS out‐in has lower lung parenchyma signal, higher blood signal, and a higher blood‐lung parenchyma contrast compared to bSTAR. In patients, SoS out‐in bSSFP was able to identify lung fibrosis and lung nodules of size 4 and 8 mm, and breath‐hold bSTAR was able to identify lung fibrosis and 8 mm nodules. ConclusionSingle breath‐hold volumetric lung imaging at 0.55T with 2‐mm isotropic spatial resolution is feasible using SoS out‐in bSSFP. This approach could be useful for rapid lung disease screening, and in cases where free‐breathing respiratory navigated approaches fail. 
    more » « less